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HEATING OF A MEDIUM AS A RESULT OF JOULE ENERGY DISSIPATION
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It is well known that when a magnetic field is present and electric
currents flow through a gas, terms over and above those present in
the case of ordinary thermal conductivity appear in the heat flux
density vector. If the gas is dense enough and the magnetic field not
over large, then the anisotropy caused by the magnetic field may be
neglected. However, for a sufficiently large electric current a term
proportional to the temperature and to the current density vector re-
mains in the heat flux density vector, This effect explains, for ex-
ample, the asymmerry of heat fluxes in the electrodes of a con-
tinuously operated electromagnetic accelerator (1). )

We shall consider this situation in relation to the example of a fully

ionized quasineutral gas with identical electron and ion temperatures.

Let the density of the electric current density j,
flowing through the gas, be of the order 10 amp/em2

and the external magnetic field be equal to zero. We ~

find from Maxwell's equations that the magnetic field
strength H is of the order 4mc -'jI, where I is the
characteristic dimension of field variation, c is the
velocity of light in a vacuum. Taking ! ~10 cm, we
find
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Here A in the Coulomb logarithm, T, is the tem-
perature in eV, e and mg are the electronic charge
and mass, respectively, ng is the electron density,
Te is the scattering time for electrons on ions. Since
(0.12) ~1,for Ty ~ 1 and n. == 10 the parameter

weTe < 1. This enables us to write the heat flux den- -

sity vector in the form [2]
q = —3.21e'KT§ — 346 KTt ngm. T

Here t is the temperature in degrees, and K is
Boltzmann's constant. For j ~ 10 amp/cm? the ratio
2a of the first term to the second is of the order

2a ~ 1.2 (A /10) (404 / |T)) T57.

In this estimate VT has dimensions degree/cm.
For Ty ~ 1 and |VT| ~ 10 the parameter 2a is of
order unity. At larger flux densities the magnitude
of this parameter increases.

925

In order to study the effects caused by the pre-
sence of the term proportional to j, in the heat flux
density vector, we consider the problem of heating
of the medium as a result of a current flow in which
the vector g has the form

= kT —hT (b = comst) , (1)
where k is the thermal conductivity. We discuss the
possibility of using the solution obtained to estimate

‘the size of the frictional force and the intensity of

heat transfer for a medium flowing in an electromag-
netic plasma accelerator,

We shall consider a flat channel 0 < Y < .2h with
wall-electrodes, filled with a motionless conducting -
medium having a temperature Ty = const at the mo-
ment t = 0, Let the medium be heated as a result
of the flow of electric current in the direction Y
with constant current density. We shall designate
by w = w (t) the Joule dissipation per unit volume
in unit time. We shall consider that the channel
walls are maintained at a constant temperature Ty,
in the process of heating. For constant k, density
of medjium p and heat capacity cp, the heat conduc -
tion equation in dimensionless quantities assumes
the form

%%=g%‘}+za%%+u, 80,y =20  foro<y<2
' 8(1,0)=0, ¥(r,2)=0 (2)
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in the case when the vector q is expressed by Eq.
1.

The heat fluxes G+ and G_ conducted through unit
surface of the lower and upper electrodes in time t

‘are equal to

t
G, = -——S gy (t, 0)Ydt = pc hT g,
Q

t
G = Sq" (t, 20y dt = pehT g _, @)
i
¢ a0
g, = 2av -+ S (Ty),,:odf’
Q QO
Here qy is the component of the vector ¢ on the
Y axis,
Integrating equation (2) with respect to y from
y= 0to y = 2 and with respect to time, we obtain
the integrated heat balance equation

T 2
20i+25vdt:g,,+g‘+5ﬁd!/. (€3}
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If v — const for 1 — =, then for 7 — «a sta-
tionary configuration is established, in which the
temperature distribution has the form

. Bfeory) 1 [1—exp(—2ay) Yy
by =— ~T[i~exp(-4a} - 2}’
(5)

2
i ¢ 2a —th2
L(a)= Tsﬂ(oo, DAY = Gy,
0

Curves of the functions ©(y) and L(z) are given
in Figs. 1 and 2. The solution of (5) shows that with
the increase of parameter a the temperature level
in the stationary state and the amount of heat which
the medium acquires in the process of passing to
the stationary state decrease. The temperature
profiles are asymmetric with respect to the chan-
nel axis y = 1; the temperature maxima are dis~-
placed towards the anode side.

We shall seek a solution of equation (2) with the
help of the Laplace transform

oG

8 (p, Y) = S exp{—pr) (v, y)dr.

0
When transformed, equation (2) and its solution

have the form

8% - 2p9° — Pﬂ'o [ A[p’ ¢° (O) = Oa

U° = M (sh 2x)"! {sh 2x — ¢2@~¥) shuy — ¢~% sh [x (2 — Ylh

9°(2) =0,

M=M@E) =p @+ob?), wx=ViTa

Ve = Sexp (—pr)V(vydt, (v=12V,

0

v, == const) (6)

For the function n(p) in the p plane with a cut
along the negative axis from p = —g? to an infini-
tely distant point, a branch was chosen which is
positive for real p > —a’ Since | exp (—4n) |< 1 for
Re p > 0, the function (sh 2w ™! may be expanded
in the series

(sh2x)™1 = 2exp (— 4hw)

2x)§ exp (— (Re p>0).

k=0

Fig. 2

By means of r(t;8,«) and u (t; 3,v) we designate
the inverses of the transforms

o= prexpl—Va(p+B)l

= pHexp|[— Vaﬂ;w] (o, 3 = consl).
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Then replacing (sh 2v)~! in expression {8) by the
series indicated above, we may obtain the following
expression for the function 4 (7,y) :

{ vde -+ 80T 171 + vol 1]

1]
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k=0
+ {2 AlT a2, (4k +2 4 y)°] —

— S Al e, (4k+2~y)21}. )

k=0

We find [3)

By @) + 8 (r; B, ),
t = exp (-—-V&B) Erf (05 V&—/?‘—"VB?)»

8 =expVafExf (0.5Va/v+V 3t}

r{v; B, a) =05 [§ (x

(Erfx:i-—

V" éexp (— o) dw) (8)

If v = const, then

0.5¢(t + 8)— Y2 (¢t —s 9
(£ +8)— vE (£E—28). 9
In what follows all the equations will be given
for the case v = const.
For a = 0 we have

p(w B oa)=

P(A) = 3 (1) ALt 0, (2 — y)?] —

—~1)¥ Al 0, 2k + y)'L

u(t; 0, @) = (v 4 0.5a) Erf (0.5 Va[7) —
a-h YV arexp (—a /4v),

r(t; 0, @) = Erf (0.5 Va/7), (10%

The heat fluxes g+ and g-, determined from (3),
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(7)—(9), and the summed heat flux Q = g+ + g~ are
equal to

g, =2at+ N (r)', ‘ g =N (1) —2at — A —vB,
N (1) = avd; 4 0.5av1® + 9; [V + 2E — 2Fexp2a]-+

2 \pkv

+v[vy+ 2§ —2Uexp2a), E-=

F=2,4,8,...
Q
F= 2 % S= 2 w U= 2w,
K =1,8,5,... K2, 4,8, k=1 8,5,...
Vi o
\l’k = -]/.._OA[) ('*‘;E- —a”‘t‘) -—_

0.5k @+ 8) + — L2 (G —8),

_ 2‘-/'-/‘."'“( + ’aﬂ)e p(—-——-’:;-——-a"l')

0.5k (x + 2152) €+ 8 +
+ g7 (203 + 204 200 — ) @ —9),
L= C(nad k), 8= d(ria?, 4B3),

A =2ar—4F sh2q, B=at*—4Ush2a, (11)

Q = 20:0*+20Q**, Q%= Yo+2E — 2F ch 2a,
Q%*= vy 4 28 —2U ch 2a. (12)
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Fig. 4
For a = 0 we have
8§, =8_=§&,

= B (o + 2 z ()5 i) + v (vo + 2 p ),

k=1
Y= = 2 VT aexp (—k 1) — 2k Erf (k/V7),

v =V’ = ]];f_ exp (—-—;.—) (f + &%) —

~ Erf (V )(21:1—{-—3~). (13)

If we seek the inverse transforms in the case
where a = 0 with the help of the second expansion

theorem [4], we obtain the following expression for
the quantity g:

gty S e 0 (r—5) +

w2 {2+ 1) 3
[oe]
32 §1 exp {—Yentt(2p + 1)1
+ at (20 +1p )

p=0
It is convenient to use expression (13) for small
T, and expression (14) for large 7. For small a the

functions Y| and vk may be represented in the fol-
lowing form.

¥ = Pi° + a? [»;*5% exp ('—i-c—) (v + 4k%) —
k &k t
— 2kt () (v 4 )| 4+ 0@,
Vi = v® 4 a® {— 2k Brf (k| V' 0) (Ya1? + */uh%0 4 3/5h%) +

-+ exp (— &/ 7) (*/ch* + M /1h% + Y157%)} + O (a*). (15)

For small 7, we have, neglecting terms of the
order of exp (—1/7),

Q= 20y+ 20vy = 2% [% exp (—a*t) |-

+ 1 +2a‘relf(a V1) ] _-_‘v{zlifi_‘(-; -+ 2‘_:“—“)oxp (—a®) +

+ %(Har £ 2T )er[(a]/‘r)_‘

(erf z =1 — Erf x), (16)

For small 7 and a we find, using (15) and (18),
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The effectiveness of heat transfer to the walls is
characterized by the quantity

— Q
M= 5w, ° (18)

which represents the ratio of thermal energy trans-
ferred through the walls in time 7 to the sum of the
energy arriving during this time and the thermal
energy which the medium possessed when 7= 0,
The function 1(7) depends on two parameters: @ and
s = &;/v. For 7 — = we have (dQ/dr) ~ 2v and n —~
- 1. However, calculations show that (dQ/d7) = 2v
for T > 7+, where 7, ~ 1, The quantity 7« is the
time in which the stationary state is established.
During this time the medium loses an amount of
heat 24 i, and gains an amount vI.(a), equal to the
difference between the heat which has arrived 2v 7«
and the heat conducted through the walls 2vQ**(T4).
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Results calculated from Egs. (12)-(18) are shown in Figs. 3-5.
The behavior of the quantity n is shown in Fig. 3 for small values of
T. For the three lower curves s = 0, while for the three upper s = 2,
The effectiveness of heat transfer increases as the parameters ¢ and s
increase, The behavior of Q*(7) is represented in Fig, 4 by a series
of curves having an asymptote at ¢(7) = 1. The three curves, which
become parallel to the bisectrix ¢(7) =T when 7>, are graphs of
the function Q*(7). For each curve of the first series we can indicate
a point 7 = T4«(€) starting from which the difference between the
ordinates of points on the curve and unity becomes less than & = o (1);
for each curve of the second series we can indicate a point T = T«(€)
starting from which the difference between the angle of inclination of
the curve to the 7 axis and the angle 45° becomes less than . In
accordance with Fig. 4 the time 7, for transition to the stationary
configuration decreases as @ increases.

Figure 5 represents the behavior of n(r) for $; = 0, and various
values of a, An increase in this parameter leads to an increase in
the effectiveness of heat transfer,

1t is useful to note that one may regard the ther-

mal energy 26; possessed by the gas when 7= 0

as energy received from thermal sources having

an intensity v (1) = #i6 (1), where 6(7) is a delta-
function. Thus the solution of (7)—(9) will also be a
golution to the problem of the heating of the medium
from a temperature Tj = Tw as a result of the dis~
gipation of energy with density

kT,
w = —=[v + 98 (7)] (v = const).

In conclusion, we consider the possibility of using
the solutions which have already been obtained to
make a rough estimate of the magnitude of the fric-
tional forces and heat transfer in electromagnetic
accelerators having a constant cross section along
their length. When a conducting gas is accelerated
by a strong electromagnetic field, we may neglect
the pressure gradient in the momentum equation [5],
and then, taking into account the viscous friction of
the gas, the momemtum equation may be written
approximately in the form

ou _ 0% L f
nl‘az—u'al?"r N

u(0)=0, a(2h)=0

(m == G [2h = const),

Here u is the dynamical viscosity coefficient, x is
the coordinate measured along the axis of the chan-
nel, G is the mass rate of gas flow per second, and
f is the density of the accelerazting electromagnetic
force. If we neglect the initial gas momentum (u= 0
for x = 0) and take f = const, then, making use of the
solution found above, we find that the ratio of the
frictional force integrated along x to the electromag-
netic force, also integrated along x, is equal to 7 (7)
for 3; = 0, a = 0, 7= Ty = ux/h*m, where the function
71{7) is determined from (12) and (18).

We shall consider the energy equation. For a
strong electromagnetic field, and on condition that the
Joule dissipation in the channel (j%/ ¢ is equal in order

of magnitude to the work done by the electromagnetic
force in unit time (uf), we may neglect the product
of the velocity and the pressure gradient (udp/9x) in
the energy equation. We then have approximately

aT 9q,
mew——“—ayi—]—w, T(I,O):Tw,
Tz 2r)=Ty, T0O,y =Ty,

N
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Fig. 5

If the heat flux is of the form (1), then we may use
the solution already obtained for making estimates.
The ratio of the amount of heat conducted per se-~
cond through a length x and unit width of the channel
wall to the Joule energy dissipated in a volume x X
x 2h x 1is equal to 1 (1) where 7 = T4 = ux /Ph’m (P
is Prandtl's number). In the case of a fully ionized
gas Prandtl's number is small 7y < 7q, and the ef-
fects associated with heat transfer are much stronger
than the effects associated with the influence of vis -
cosity. If the heat flux vector has a term propor -
tional to the electric current density vector, then
heat transfer proceeds with greater intensity, as
shown above, ‘

REFERENCES

1. G. C. Oates, J. K, Richmond, Y. Aoki and G.
Grohs, "Loss mechanisms of a low-temperature
plasma accelerator, " ARS Journ., vol. 32, no. 4,
pp. 541-548, 1962, )

2. 8, L. Braginskii, "Transport phenomena in a
plasma," Problems of Plasma Theory [in Russian],
no. 1, Gosatomizdat, 1963.

3. V. A, Ditkin and P, 1. Kuznetsov, Handbook of
Operational Calculus [in Russian], Gostekhizdat p.
157.1951.

4. M. A. Lavrent'ev and B. V. Shabat, Methods
of the Theory of Functions of a Complex Variable
[in Russian], Fizmatgiz, p. 483, 1958,

5. G. M. Bam-Zelikovich, "One-dimensional non-
stationary motion of a conducting gas under the in-
fluence of strong magnetic fields," Izv. AN SSR,
OTN, Mekhanika i Mashinostroenie, no. 2, 1963.

28 May 1965 Moscow



